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Semiclassical spectra and diagonal matrix elements by harmonic inversion
of cross-correlated periodic orbit sums
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Semiclassical spectra weighted with products of diagonal matrix elements of operatorsÂa , i.e., gaa8(E)

5(n^nuÂaun&^nuÂa8un&/(E2En), are obtained by harmonic inversion of a cross-correlation signal con-
structed of classical periodic orbits. The method provides highly resolved semiclassical spectra even in situa-
tions of nearly degenerate states, and opens the way to reducing the required signal lengths to shorter than the
Heisenberg time. This implies a significant reduction of the number of orbits required for periodic orbit
quantization by harmonic inversion.@S1063-651X~99!07908-8#

PACS number~s!: 05.45.2a, 03.65.Sq
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The semiclassical quantization of periodic orbits is of fu
damental interest for both regular@1# and chaotic@2,3# dy-
namical systems. In both cases the semiclassical densi
states is obtained by summing over the periodic orbits of
underlying classical system. However, periodic orbit sums
this type usually diverge. Various techniques have been
veloped in recent years to overcome this problem. Mos
these techniques are especially designed for hyperbolic~cha-
otic! systems@4–6# and cannot be applied to systems w
regular or mixed regular-chaotic dynamics. Recently a n
technique, based onharmonic inversionof semiclassical sig-
nals@7,8#, was shown to be both very powerful and univers
for the problem of periodic orbit quantization in that it do
not depend on special properties of the system such a
godicity or the existence of a symbolic dynamics. T
method only requires the knowledge of periodic orbits a
their physical quantities up to a certain maximum perio
which depends on the average local density of states. Un
tunately, this method is not free of the general drawback
most semiclassical approaches, which suffer from a ra
~exponential for chaotic systems! proliferation of periodic
orbits with their period, which in turn requires an enormo
number of orbits to be taken into account.

In this paper we propose to implement an extension of
filter-diagonalization method, which is a method of solving
the harmonic inversion problem@9,10#, to the case of time
cross-correlation functions @9,11,12#, i.e., the one-
dimensional time signalC(t) is extended to aD3D matrix
of cross-correlated time signalsCaa8(t), with a,a8
51, . . . ,D. This method has recently also served as a po
erful tool for the semiclassical calculation of tunneling sp
tings @13#. The informational content of aD3D time signal
is increased roughly by a factor ofD as compared to a 1
31 signal. Here we demonstrate that the required amoun
periodic orbits can be significantly reduced when a cro
correlated periodic orbit sum~signal! is inverted instead of a
single periodic orbit sum. The power of the method is de
onstrated for the circle billiard, as an example of a co
pletely integrable system.

Consider a quantum HamiltonianĤ whose eigenvalues
arewn and eigenstatesun&. We introduce a set ofD smooth
PRE 601063-651X/99/60~2!/1639~4!/$15.00
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and linearly independent operators~there is no need to
choose commuting observables! and define a non-trace-typ
cross-correlated function@14#

gaa8~w!5(
n

banba8n

w2wn1 i e
, ~1!

whereban andba8n are the diagonal matrix elements of o
eratorsÂa and Âa8 , respectively, i.e.,

ban5^nuÂaun&. ~2!

Note that Eq.~1! can only be written as a trace formula,

gaa8~w!5tr$ÂaĜ1~w!Âa8%,

with the Green functionĜ1(w)5(w2Ĥ1 i e)21, if either
Âa or Âa8 commutes withĤ @14#. The weighted density of
states is given by

%aa8~w!52
1

p
Im gaa8~w!. ~3!

Until recently the periodic orbit quantization would involv
the use of periodic orbit expressions for functionsgaa8(w)
similar to that in Eq.~1!. The problem one would then en
counter when trying to extract the semiclassical eigenen
gies~poles! is that of the analytic continuation ofgaa8

sc (w) to
the real axis, where the latter diverges. A general proced
proposed in Refs.@7,8# introduced aspects of signal proces
ing into the solution of this problem. It was suggested
perform a spectral analysis~harmonic inversion! of a ‘‘time’’
~more precisely, actions! signal constructed of the same s
of periodic orbits. Here we extend the harmonic inversi
procedure of Refs.@7,8# to the analysis of a semiclassic
cross-correlation signal

Caa8~s!5
1

2pE2`

1`

gaa8~w!e2 iswdw, ~4!
1639 © 1999 The American Physical Society
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defined as the Fourier transform ofgaa8(w). When applied
to the quantum expression~1!, this yields

Caa8~s!52 i(
n

banba8ne2 iwns. ~5!

Let us assume thatCaa8(s) is given, and the spectral param
eters~e.g.,wn anddaa8,n5banba8n) are to be extracted. Thi
can be done by solving the conventional harmonic invers
problem@9,10#, which is formulated as a nonlinear fit of th
signalC(s) by the sum of sinusoidal terms,

C~s!5(
n

dne2 iswn, ~6!

with the set of, in general, complex variational paramet
$wn ,dn%. Simple information theoretical consideration
@10,8# then yield an estimate for the required signal leng
smax;4p%̄(w), for poleswn<w which can be extracted b
this method. When a periodic orbit approximation of t
quantum signalC(s) is used, this estimate results sometim
in a very unfavorable scaling because of a rapid~exponential
for chaotic systems! proliferation of periodic orbits with in-
creasing period.

Consider a generalized harmonic inversion proble
which assumes that the wholes-dependentD3D signal
Caa8(s) is adjusted simultaneously to the form of Eq.~5!,
with ban and wn being the variational parameters. The a
vantage of using the cross-correlation approach@9,11,12# is
based on the simple argument that the total amount of in
pendent information contained in theD3D signal isD(D
11) multiplied by the length of the signal, while the tot
number of unknowns~hereban andwn) is (D11) times the
total number of poleswn . Therefore the informational con
tent of theD3D signal per unknown parameter is increas
@compared to the case of Eq.~6!# by a factor of D. ~Of
course, this scaling holds only approximately and for su
ciently small numbersD of operatorsÂa chosen.!

The calculation of a semiclassical approximation
Caa8(s) is significantly simplified for systems with a scalin
property, i.e., where the shape of periodic orbits does
depend on the scaling parameterw and the classical action
scales asSPO5wsPO. For the identity operatorÂ15I the
elementC11

sc(s) is the Fourier transform of Gutzwiller’s trac
formula @2,3# for chaotic systems, and of the Berry-Tab
formula @1# for regular systems, i.e.~see Refs.@7,8#!,

C11
sc~s!5(

PO
APOd~s2sPO!, ~7!

wheresPO are the periods of the orbits andAPO the ampli-
tudes ~recurrence strengths! of the periodic orbit contribu-
tions including phase information. ForÂ15I and an arbi-
trary smooth operatorÂa the elementsCa1

sc (s) are obtained
from a semiclassical approximation to the generalized tr
formula tr$Ĝ1Âa% @15,8#. The result is that the amplitude
APO in Eq. ~7! have to be multiplied by the classical avera
of the observableAa along the periodic orbit,
n

s

,

s

,

-

e-

-

ot

e

aa,PO5
1

sPO
E

0

sPO
Aa„q~s!,p~s!…ds, ~8!

with Aa(q,p) the Wigner transform of the operatorÂa . The
problem of finding a semiclassical approximation to Eq.~5!

for the general case of two arbitrary smooth operatorsÂa

and Âa8 is investigated in Ref.@14#, where numerical evi-
dence is presented that the amplitudesAPO in Eq. ~7! have to
be multiplied by the product of the classical averag
aa,POaa8,PO, of the two corresponding classical observabl
i.e.,

Caa8
sc

~s!5(
PO

aa,POaa8,POAPOd~s2sPO!. ~9!

We here adopt the results of Ref.@14# and use Eq.~9! as the
starting point for the following application of harmonic in
version of cross-correlation functions. Note that all quantit
in Eq. ~9! are obtained from the classical periodic orbits.

The idea of periodic orbit quantization by harmonic inve
sion @7,8,11# is to fit the semiclassical functionsCaa8

sc (s)
given in a finite range 0,s,smax by the functional form of
the quantum expression~5!. The frequencies of the harmoni
inversion analysis are then identified with the semiclass
eigenvalueswn and the amplitudesban with the semiclassi-
cal approximations to the diagonal matrix elemen

^nuÂaun&. We will show that for a given number of periodi
orbits the accuracy of semiclassical spectra can be sig
cantly improved with the help of the cross-correlation a
proach, or, alternatively, spectra with similar accuracy can
obtained from a periodic orbit cross-correlation signal w
significantly reduced signal length.

Here we only give a qualitative and brief description
the method. The details of the numerical procedure of so
ing the harmonic inversion problem~6! and the generalized
harmonic inversion problem~5! are presented in Refs
@9–12#. The idea is to recast the nonlinear fit problem a
linear algebraic problem@9#. This is done by associating th
signalCaa8(s) ~to be inverted! with a time cross-correlation
function between an initial stateFa and a final stateFa8 ,

Caa8~s!5^Fa8ue
2 isĤeffFa&, ~10!

where the fictitious quantum dynamical system is descri
by an effective HamiltonianĤeff . The latter is defined im-
plicitly by relating its spectrum to the set of unknown spe
tral parameterswn and ban . Diagonalization ofĤeff would
yield the desiredwn andban . This is done by introducing an
appropriate basis set in which the matrix elements ofĤeff are
available only in terms of the known signalsCaa8(s). The
HamiltonianĤeff is assumed to be complex symmetric ev
in the case of a bound system. This makes the harmo
inversion stable with respect to ‘‘noise’’ due to the impe
fections of the semiclassical approximation. The most e
cient numerical and practical implementation of the h
monic inversion method with all relevant formulas can
found in Refs.@10–12#.

We now demonstrate the method of harmonic inversion
cross-correlated periodic orbit sums for the example of
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circle billiard. This is a regular physical system, and the
riodic orbits and their physical quantities can be obtain
analytically. We choose this system for the sake of simplic
and it will be evident that the procedure works equally w
with more complex systems where periodic orbits have to
searched numerically. The nearest neighbor level statistic
integrable systems is a Poisson distribution, with a h
probability for nearly degenerate states, and we will dem
strate the power of our new method by fully resolving tho
nearly degenerate states. The exact quantum mechanic
genvaluesE5\2k2/2M of the circle billiard are given as
zeros of Bessel functionsJumu(kR)50, wherem is the angu-
lar momentum quantum number andR, the radius of the
circle. In the following we chooseR51. Semiclassical ei-
genvalues can be obtained by an EBK~Einstein-Brillouin-
Keller! torus quantization resulting in the quantization co
dition @16#

kRA12~m/kR!22umuarccos
umu
kR

5pS n1
3

4D , ~11!

with m50,61,62, . . . being the angular momentum qua
tum number andn50,1,2, . . . theradial quantum number
States with angular momentum quantum numbermÞ0 are
twofold degenerate.

For billiard systems the scaling parameter is the abso
value of the wave vector,w[k5upu/\, and the action is
proportional to the length of the orbit,SPO5\kl PO. The
periodic orbits of the circle billiard are those orbits for whic
the angle between two bounces is a rational multiple of 2p,
i.e., the periodsl PO are obtained from the condition

l PO52mr sing, ~12!

with g[pmf /mr , mf51,2, . . . thenumber of turns of the
orbit around the origin, andmr52mf,2mf11, . . . thenum-
ber of reflections at the boundary of the circle. Periodic
bits with mrÞ2mf can be traversed in two directions an
thus have multiplicity 2. To construct a periodic orbit cros
correlation signalCaa8

sc (l ), as defined by Eq.~9!, we choose

three different operators,Â15I the identity,Â25r the dis-
tance from the origin, andÂ35(L/k)2 the square of the
scaled angular momentum. For these operators the clas
weightsaa,PO @Eq. ~8!# are obtained as

a1,PO51,

a2,PO5
1

2 S 11
cosg

tang
arcsinh tang D , ~13!

a3,PO5cos2g.

The calculation of the weightsAPO in Eq. ~9! depends on
whether the classical dynamics is regular or chaotic. For
circle billiard with regular dynamics we start from the Berr
Tabor formula@1# and obtain

APO5Ap

2

l PO
3/2

mr
2

e2 i [(p/2)mPO1p/4], ~14!
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wheremPO53mr is the Maslov index. Note that the forma
ism is directly applicable to chaotic systems with the amp
tudesAPO in Eq. ~9! computed according to Gutzwiller’s
trace formula@2,3#.

Once all the ingredients of Eq.~9! for the circle billiard
are available, the 333 periodic orbit cross-correlation signa
Caa8

sc (l ) can easily be constructed and inverted by the g
eralized filter-diagonalization method. Results obtained fr
the periodic orbits with maximum lengthsmax5100 are pre-
sented in Fig. 1. Figure 1~a! is part of the density of states
%(k), and Figs. 1~b! and 1~c! are the density of state
weighted with the diagonal matrix elements of the operat
Â5r and Â5L2, respectively. The squares are the resu
from the harmonic inversion of the periodic orbit cros
correlation signals. For comparison the crosses mark the
trix elements obtained by exact quantum calculations at
sitions kEBK obtained from the EBK quantization conditio
~11!. We do not compare with the exact zeros of the Bes
functions because Eq.~9! is correct only to first order in\
and thus the harmonic inversion ofCaa8

sc (s) cannot provide
the exact quantum mechanical eigenvalues. A discussio
the semiclassical accuracy can be found in@16#, and higher
order\ corrections to the periodic orbit sum are consider
in @17#. However, the perfect agreement between the eig

FIG. 1. Density of states weighted with the diagonal mat

elements of the operators~a! Â5I , ~b! Â5r , ~c! Â5L2 for the
circle billiard with radiusR51 as functions of the wave numbe
k5upu/\ ~in atomic units!. Crosses, EBK eigenvalues and quantu
matrix elements. Squares, eigenvalues and matrix elements
tained by harmonic inversion of cross-correlated periodic o
sums. Three nearly degenerate states are marked by arrows.
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valueskHI obtained by harmonic inversion and the EBK e
genvalueskEBK is remarkable, and this is even true for nea
degenerate states marked by arrows in Fig. 1~a!. The eigen-
values of some nearly degenerate states are presente
Table I. It is important to emphasize that these states w
level splittings of, e.g.,Dk5631024 cannot be resolved by
the originally proposed method of periodic orbit quantizati
by harmonic inversion@7,8# with a periodic orbit signal
length smax5100. To resolve the two levels atk'11.049
~see Table I! a signal length of at leastsmax'500 is required
if a single periodic orbit functionCsc(s) is used instead of a
cross-correlation function. The method presented in this
per can therefore be used to significantly reduce the requ
signal length and thus the required number of periodic or
for periodic orbit quantization by harmonic inversion. A

TABLE I. Nearly degenerate semiclassical states of the cir
billiard. kEBK, results from EBK quantization.kHI, eigenvalues ob-
tained by harmonic inversion of cross-correlated periodic o
sums. States are labeled by the radial and angular momentum q
tum numbers (n,m).

n m kEBK kHI

1 4 11.048664 11.048569
0 7 11.049268 11.049239

3 1 13.314197 13.314216
0 9 13.315852 13.315869

3 2 14.787105 14.787036
1 7 14.805435 14.805345

1 11 19.599795 19.599863
5 1 19.609451 19.608981

1 15 24.252501 24.252721
6 2 24.264873 24.264887
cs

ev

A

v

r,
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th

a-
ed
ts

such the part of the spectrum shown in Fig. 1 can even
resolved, despite the splittings of the nearly degenerate s
marked by the arrows, from a short cross-correlation sig
with smax530, which is about the Heisenberg periodsH

52p%̄(k), i.e., half of the signal length required for th
harmonic inversion of a 131 signal@8#. The reduction of the
signal length is especially important if the periodic orbit p
rameters are not given analytically, as in our example of
circle billiard, but must be obtained from a numerical pe
odic orbit search. Note also that the density of periodic orb
increases with the period and in chaotic systems the pro
eration of periodic orbits is exponential. How small cansmax
get as one uses more and more operators in the metho
might be that half of the Heisenberg period is a fundamen
barrier for bound systems with chaotic dynamics in analo
to the Riemann-Siegel formula@6# while for regular systems
an even further reduction of the signal length should in pr
ciple be possible. However, further investigations are nec
sary to clarify this point.

In conclusion, we have introduced a method of perio
orbit quantization and calculation of diagonal matrix e
ments based on the construction of a cross-correlated p
odic orbit sum followed by its harmonic inversion. Th
method is not restricted to bound regular systems but is
versal and can be applied to open and chaotic system
well. It opens the way to reducing the required signal leng
to shorter than the Heisenberg time and therefore sign
cantly reduces the number of orbits required for perio
orbit quantization by harmonic inversion.
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