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Semiclassical spectra and diagonal matrix elements by harmonic inversion
of cross-correlated periodic orbit sums
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Semiclassical spectra weighted with products of diagonal matrix elements of opékatoi®., g, (E)
=3.(n|A,In)¥n|A,/|n)/(E-E,), are obtained by harmonic inversion of a cross-correlation signal con-
structed of classical periodic orbits. The method provides highly resolved semiclassical spectra even in situa-
tions of nearly degenerate states, and opens the way to reducing the required signal lengths to shorter than the
Heisenberg time. This implies a significant reduction of the number of orbits required for periodic orbit
guantization by harmonic inversiof§1063-651X99)07908-9

PACS numbegps): 05.45-a, 03.65.Sq

The semiclassical quantization of periodic orbits is of fun-and linearly independent operatotthere is no need to
damental interest for both regulgt] and chaotid2,3] dy-  choose commuting observablemnd define a non-trace-type
namical systems. In both cases the semiclassical density @foss-correlated functiofi4]
states is obtained by summing over the periodic orbits of the
underlying classical system. However, periodic orbit sums of b.nban
this type usually diverge. Various techniques have been de- Joar (W) =2 wewrie
veloped in recent years to overcome this problem. Most of " n
these techniques are especially designed for hypertaiia-
otic) systemg4—6] and cannot be applied to systems wit . -
regular or mixed regular-chaotic dynamics. Recently a neveratorsA, andA,, respectively, i.e.,
technique, based dmarmonic inversiorof semiclassical sig-
nals[7,8], was shown to be both very powerful and universal bn=(n|A,|n). 2
for the problem of periodic orbit quantization in that it does
not depend on special properties of the system such as eXote that Eq.(1) can only be written as a trace formula,
godicity or the existence of a symbolic dynamics. The
method only requires the knowledge of periodic orbits and gaa’(w):tr{Aaé+(W)Aa’}!
their physical quantities up to a certain maximum period,
which depends on the average local density of states. Unfo(zit, the Green functior* (w) = (w—F+ie) L, if either
tunately, this method is not free of the general drawback of, A s . .
most semiclassical approaches, which suffer from a rapié\“ or Aa’ _comrrt;utes withH [14]. The weighted density of
(exponential for chaotic systemgroliferation of periodic states Is given by
orbits with their period, which in turn requires an enormous 1
number of orbits to be taken into account. 0wt (W)=——1M g, (W). 3

In this paper we propose to implement an extension of the m

filter-diagonalization methadwhich is a method of solving ) . , L .
the harmonic inversion problefi®,10], to the case of time Until recently the periodic orbit quantization would involve

cross-correlation functions[9,11,13, i.e., the one- the use of periodic orbit expressions for functians, (w)
dimensional time signaC(t) is extended to ® XD matrix ~ Similar to that in Eq.(1). The problem one would then en-
of cross-correlated time signal€,, (1), with a,a’ counter when trying to extract the semmlassm«'éll eigenener-
=1,...D. This method has recently also served as a powdies(poles is that of the analytic continuation of;,, (w) to
erful tool for the semiclassical calculation of tunneling split- the real axis, where the latter diverges. A general procedure
tings[13]. The informational content of B X D time signal ~ proposed in Refd.7,8] introduced aspects of signal process-
is increased roughly by a factor @ as compared to a 1 ing into the solution of this problem. It was suggested to
x 1 signal. Here we demonstrate that the required amount d¥erform a spectral analysibarmonic inversionof a “time”
periodic orbits can be significantly reduced when a crosstmore precisely, actios) signal constructed of the same set
correlated periodic orbit Su“jsignab is inverted instead of a of periodic orbits. Here we extend the harmonic inversion
single periodic orbit sum. The power of the method is dem{rocedure of Refs[7,8] to the analysis of a semiclassical
onstrated for the circle billiard, as an example of a com-Cross-correlation signal
pletely integrable system.

Consider a quantum Hamilltonidﬁ whose eigenvalues Cou(S)= ifmgw,(w)e—iswdw, ()
arew, and eigenstatg$1). We introduce a set dd smooth 2m) =

@

h Whereb,, andb,,, are the diagonal matrix elements of op-
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defined as the Fourier transform @f ., (w). When applied 1 [spo
to the quantum expressidf), this yields aa,PO:%JO A.(a(s),p(s))ds, (8)
Coui(S)= —iE bynbyrne WS, (5)  with A,(g,p) the Wigner transform of the operatdr,. The
n

problem of finding a semiclassical approximation to Eg).

o for the general case of two arbitrary smooth operai@gs
Let us assume thl,,(s) is given, and the spectral param- and A, is investigated in Ref[14], where numerical evi-

eters(€.g., Wy andde: n=banb, ) are to be extracted. This o 00" presented that the amplitudgs, in Eq. (7) have to
can be done by solving the conventional harmonic inversiory multiplied by the product of the classical averages,

Eirgr?;?g([g),lb?/i tvr‘]’g'gzr'rf:)?rsr?nulﬁﬁgaﬁ;rggm'near fit of the a4, pRa’ PO of the two corresponding classical observables,
' ie.,

C(s)=2, dye™""n, () CEh(9)=2) Aupchar poApod(SSp0). (9

with the set of, in general, complex variational parameterdVe here adopt the results of Rgt4] and use Eq(9) as the
{w,.,d,}. Simple information theoretical considerations starting point for the following application of harmonic in-
[10,8] then yield an estimate for the required signal length,version of cross-correlation functions. Note that all quantities
S~ 4775(\,\,), for polesw,<w which can be extracted by in EqQ. (9) are obta_ingd from the cl_ass'ical periodic o'rbi.ts.
this method. When a periodic orbit approximation of the The idea of periodic orbit quantization by harmonic inver-
quantum signaC(s) is used, this estimate results sometimession [7,8,11 is to fit the semiclassical function§;,,(s)
in a very unfavorable scaling because of a rggixponential ~ given in a finite range € s<sp, by the functional form of
for chaotic systemsproliferation of periodic orbits with in- the quantum expressidh). The frequencies of the harmonic
creasing period. inversion analysis are then identified with the semiclassical
Consider a generalized harmonic inversion problemegigenvaluesv, and the amplitudeb,,, with the semiclassi-
which assumes that the whokdependentD XD signal cal approximations to the diagonal matrix elements
C,.(s) is adjusted simultaneously to the form of B&),  (n|A_|n). We will show that for a given number of periodic
with b,, andw, being the variational parameters. The ad-orbits the accuracy of semiclassical spectra can be signifi-
vantage of using the cross-correlation approg&iil, 13 is  cantly improved with the help of the cross-correlation ap-
based on the simple argument that the total amount of indegproach, or, alternatively, spectra with similar accuracy can be
pendent information contained in th@x D signal isD(D obtained from a periodic orbit cross-correlation signal with
+1) multiplied by the length of the signal, while the total significantly reduced signal length.
number of unknownsghereb,,, andw,) is (D + 1) times the Here we only give a qualitative and brief description of
total number of polesv,,. Therefore the informational con- the method. The details of the numerical procedure of solv-
tent of theD X D signal per unknown parameter is increaseding the harmonic inversion proble®) and the generalized
[compared to the case of E¢6)] by a factor of D. (Of  harmonic inversion problem5) are presented in Refs.
course, this scaling holds only approximately and for suffi-{9—12]. The idea is to recast the nonlinear fit problem as a
Cient|y small number® of operators&a Chosen)_ linear a|99braic prObIerfg]. This is done by aSSOCiating the
The calculation of a semiclassical approximation tosignalC,,:(s) (to be invertegwith a time cross-correlation
C..(s) is significantly simplified for systems with a scaling function between an initial stat,, and a final stateb,,,
property, i.e., where the shape of periodic orbits does not .
depend on the scaling parameterand the classical action Coa (8)=(D e et ), (10

scales asS,g=Wspo. For the identity operatoA;=1 the . . . .
elementCS<(s) is the Fourier transform of Gutzwiller's trace where the fictitious quantum dynamical system is described

formula [2,3] for chaotic systems, and of the Berry-Tabor Py an effective HamiltoniarHe. The latter is defined im-

formula[1] for regular systems, i.dsee Refs[7,8]), plicitly by relating its spectrum to the set of urlknown spec-
tral parametersv, andb,,. Diagonalization ofH.; would
yield the desiredv, andb,,,. This is done by introducing an

1(s) = ;) Apod(S~Spo), () appropriate basis set in which the matrix elememélgfare
available only in terms of the known signals,,/(s). The
wherespg, are the periods of the orbits andeg the ampli- ~ HamiltonianH, is assumed to be complex symmetric even

tudes (recurrence strength®f the periodic orbit contribu- N the case of a bound system. This makes the harmonic
. . . . . s . inversion stable with respect to “noise” due to the imper-
tions including phase information. F&;=1 and an arbi- : : X N )
. < ] fections of the semiclassical approximation. The most effi-
trary smooth operatoh,, the element<C;;(s) are obtained  cjent numerical and practical implementation of the har-

from a semiclassical approximation to the generalized trac@,onic inversion method with all relevant formulas can be
formula t{G*A,} [15,8]. The result is that the amplitudes found in Refs[10-12.

Apgin Eqg. (7) have to be multiplied by the classical average We now demonstrate the method of harmonic inversion of
of the observablé , along the periodic orbit, cross-correlated periodic orbit sums for the example of the
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circle billiard. This is a regular physical system, and the pe- 3 T T T T T T
riodic orbits and their physical quantities can be obtained 2.5 (@ -
analytically. We choose this system for the sake of simplicity o L
and it will be evident that the procedure works equally well
with more complex systems where periodic orbits have to be
searched numerically. The nearest neighbor level statistics of

p(k)
oo~
N> 8——=8

—a

integrable systems is a Poisson distribution, with a high 0.5

probability for nearly degenerate states, and we will demon- 1 7
strate the power of our new method by fully resolving those 05 =t : : : L3
nearly degenerate states. The exact quantum mechanical ei- (b)
genvaluesE=7%2k?/2M of the circle billiard are given as 2+ 1
zeros of Bessel functiong,, (kR) =0, wheremis the angu- 15 | ]

lar momentum quantum number am] the radius of the 2_
circle. In the following we choos®=1. Semiclassical ei- <

genvalues can be obtained by an EBEinstein-Brillouin- 05 - i
Keller) torus quantization resulting in the quantization con- T T
dition [16] 0 ) ; , ) ,
|m| 3 200 T ©]
kR\/l—(m/kR)z—|m|ar000ﬁ:w(n+ Z)’ (12) 150 1 |
<
with m=0,+1,+2, ... being the angular momentum quan- < 100 | i
tum number anch=0,1,2 ... theradial quantum number. 50 - T T i
States with angular momentum quantum numivetO are T T|
twofold degenerate. otla Ba i -l
For billiard systems the scaling parameter is the absolute 1'0 1'1 1'2 1'3 1'4 1'5
value of the wave vectonw=k=|p|/%, and the action is k (a.u.)

proportional to the length of the orbiGso=%k/ po. The
periodic orbits of the circle billiard are those orbits for which ~ FIG. 1. Density of states weighted with the diagonal matrix
the angle between two bounces is a rational multiple ®f 2 elements of the operatofg) A=1, (b) A=r, (c) A=L? for the

i.e., the periods g are obtained from the condition circle billiard with radiusR=1 as functions of the wave number
k=|p|/# (in atomic unit3. Crosses, EBK eigenvalues and quantum
/ po=2m, sinvy, (12 matrix elements. Squares, eigenvalues and matrix elements ob-
tained by harmonic inversion of cross-correlated periodic orbit
with y=mmy,/m,, my=1,2, ... thenumber of turns of the sums. Three nearly degenerate states are marked by arrows.
orbit around the origin, anth, =2m,,2m,+1, ... thenum-

ber of reflections at the boundary of the circle. Periodic orhere yupo=3m, is the Maslov index. Note that the formal-

bits with m,#2m,, can be traversed in two directions and jsm js directly applicable to chaotic systems with the ampli-
thus have multiplicity 2. To construct a periodic orbit Cross-yydes Apg in Eq. (9) computed according to Gutzwiller's
correlation signaC’’ ,(~), as defined by E¢9), we choose  trace formulg2,3].

three different operatorsd, =1 the identity,A,=r the dis- Once all the ingredients of Eq9) for the circle billiard
tance from the origin, and\;=(L/k)? the square of the 2ar€ available, the 8 3 periodic orbit cross-correlation signal

scaled angular momentum. For these operators the classic@l., (/) can easily be constructed and inverted by the gen-

weightsa,, po [EQ. (8)] are obtained as eralized filter-diagonalization method. Results obtained from
' the periodic orbits with maximum lengt,,,= 100 are pre-
a po=1, sented in Fig. 1. Figure(d) is part of the density of states,
o(k), and Figs. b) and Xc) are the density of states
1 cosy _ weighted with the diagonal matrix elements of the operators
apo=5| 1t tany arcsinhtary |, (13 A=r andA=L2, respectively. The squares are the results

from the harmonic inversion of the periodic orbit cross-
correlation signals. For comparison the crosses mark the ma-
trix elements obtained by exact quantum calculations at po-
sitions kEBX obtained from the EBK quantization condition
£11). We do not compare with the exact zeros of the Bessel
functions because E@9) is correct only to first order ik

a3’p0= CO§’)’.

The calculation of the weightslpg in Eq. (9) depends on
whether the classical dynamics is regular or chaotic. For th
circle billiard with regular dynamics we start from the Berry-

Tabor formula[1] and obtain and thus the harmonic inversion 6f" ,(s) cannot provide
the exact quantum mechanical eigenvalues. A discussion of
/312 the semiclassical accuracy can be found1f], and higher
Apo=\/ 5 —one*‘[(”’z)“F'O+ i), (14)  order corrections to the periodic orbit sum are considered

2 m; in [17]. However, the perfect agreement between the eigen-
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TABLE I. Nearly degenerate semiclassical states of the circlesuch the part of the spectrum shown in Fig. 1 can even be
billiard. k=%, results from EBK quantizatiork™, eigenvalues ob-  resolved, despite the splittings of the nearly degenerate states
tained by harmonic inversion of cross-correlated periodic orbitygrked by the arrows, from a short cross-correlation signal
sums. States are labeled by the radial and angular momentum quaRith s...=30. which is about the Heisenberg peris(d

max ’

t b ,m). — . . )
um numbers ,m) =2mp(k), i.e., half of the signal length required for the

n m KEBK KH! harmonic inversion of a X 1 signal[8]. The reduction of the
signal length is especially important if the periodic orbit pa-
1 4 11.048664 11.048569 rameters are not given analytically, as in our example of the
0 7 11.049268 11.049239 circle billiard, but must be obtained from a numerical peri-
3 1 13.314197 13.314216 odic orbit search. Note also that the density of periodic orbits
0 9 13.315852 13.315869 increases with the period and in chaotic systems the prolif-
eration of periodic orbits is exponential. How small ey
3 2 14.787105 14.787036 get as one uses more and more operators in the method? It
1 7 14.805435 14.805345 might be that half of the Heisenberg period is a fundamental
1 11 19599795 19 599863 barrier fpr bound systems with chagtic dynamics in analogy
5 1 19.609451 19.608981 to the Rlemann—SlegeI. formu[#] whlle for regular systems
an even further reduction of the signal length should in prin-
1 15 24.252501 24.252721 ciple be possible. However, further investigations are neces-
6 2 24.264873 24.264887 sary to clarify this point.

In conclusion, we have introduced a method of periodic
orbit quantization and calculation of diagonal matrix ele-
ments based on the construction of a cross-correlated peri-
odic orbit sum followed by its harmonic inversion. The
method is not restricted to bound regular systems but is uni-
viﬁrsal and can be applied to open and chaotic systems as
I¥vell. It opens the way to reducing the required signal lengths
to shorter than the Heisenberg time and therefore signifi-
cantly reduces the number of orbits required for periodic
orbit quantization by harmonic inversion.

valuesk! obtained by harmonic inversion and the EBK ei-
genvaluek®EK is remarkable, and this is even true for nearly
degenerate states marked by arrows in F{g).IThe eigen-
values of some nearly degenerate states are presented
Table I. It is important to emphasize that these states wit
level splittings of, e.g.Ak=6x10"* cannot be resolved by
the originally proposed method of periodic orbit quantization
by harmonic inversion7,8] with a periodic orbit signal
length s,,,,=100. To resolve the two levels &~11.049 J.M. thanks F. Steiner for stimulating discussions. J.M.
(see Table)la signal length of at least,,,~500 is required and G.W. acknowledge support by the Sonderforschungs-
if a single periodic orbit functior©*{s) is used instead of a bereich No. 237 of the Deutsche Forschungsgemeinschaft.
cross-correlation function. The method presented in this pal.M. is grateful to Deutsche Forschungsgemeinschaft for a
per can therefore be used to significantly reduce the requiredabilitandenstipendiuniGrant No. Ma 1639/8 V.A.M. ac-
signal length and thus the required number of periodic orbitknowledges support from the NSKEGrant No. CHE-

for periodic orbit quantization by harmonic inversion. As 9807229.
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